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Abstract
A new method of diagonalization of the XY-Hamiltonian of inhomogeneous
open linear chains with periodic (in space) changing Larmor frequencies and
coupling constants is developed. As an example of application, multiple-
quantum dynamics of an inhomogeneous chain consisting of 1001 spins is
investigated. Intensities of multiple-quantum coherences are calculated for
arbitrary inhomogeneous chains in the approximation of the next-nearest
interactions.

PACS numbers: 05.30.−d, 76.20.+q

1. Introduction

One-dimensional exactly solvable models (spin chains, rings) [1] have been actively employed
for studying various problems of spin dynamics [2] and quantum information theory [3].
Substantial progress in our understanding of spin dynamics has been achieved on the basis
of a homogeneous XY model for spin chains (s = 1/2) in the transverse magnetic field
[4, 5]. Recently, Hamiltonians of the simplest inhomogeneous systems (alternating systems)
have been diagonalized for the ring [6] and the linear spin chain [7]. Development of
methods for exact solution of inhomogeneous spin problems has become especially urgent in
conjunction with recent progress in quantum computation and quantum information theories
[3]. In particular, these methods can be used for studying the quantum state transfer from
one end of the chain to another one [8, 9]. The qubit addressing problem can be attacked
by variation of the Larmor frequencies of different spins [10] in classical one-dimensional
models. This immediately brings inhomogeneity into the XY model as diagonal elements of
the corresponding Hamiltonian are not equal. Consequently, we arrive at one-dimensional
spin models with Hamiltonians described by three-diagonal matrices which elements on the
diagonal are not equal, and those under and over the main diagonal are not identically equal

0305-4470/06/051039+18$30.00 © 2006 IOP Publishing Ltd Printed in the UK 1039

http://dx.doi.org/10.1088/0305-4470/39/5/003
mailto:k.feldman@dpmms.cam.ac.uk
http://stacks.iop.org/JPhysA/39/1039


1040 K E Feldman

as well. Low sensitivity of nuclear magnetic resonance (NMR), which is widely applied in
experimental implementation of quantum computations [3], leads to a further complication of
the model described above. Consideration of k-qubit systems brings us naturally to the study
of kn + r spin chains (r < k, n is arbitrary and k, n, r are non-negative integers), with Larmor
frequencies and constants of spin–spin interactions repeating periodically with period k.

The paper suggests a new method of diagonalization of a Hamiltonian of a linear
k-periodic spin chain of length kn+ r for various values r < k. Special attention is given to the
case k = 3. For a spin chain of (3n + 2)-sites with periodic parameters (period 3), a multiple-
quantum dynamics [2, 11] is analysed and intensities of all MQ coherences are calculated (see
figure 2). This analysis is based on the explicit diagonalization of the Hamiltonian of a linear
three-periodic spin chain with (3n + 2)-sites (theorem 5.1) and the exact formulae, obtained
in the paper (theorem 6.1), for the intensities of all MQ coherences developed in any nuclear
spin system coupled by the nearest-neighbour dipolar interactions. We conclude the paper
with a discussion of the properties of eigenvalues and eigenvectors of the general k-periodic
systems with (kn − 1)-sites (theorem 7.1).

2. Model

The Hamiltonian of a spin-1/2 open chain with only nearest-neighbour (NN) couplings has
the following general form:

H =
N∑

n=1

ωnInz +
N−1∑
n=1

Dn,n+1(In,xIn+1,x + In,yIn+1,y), (1)

where ωn, n = 1, . . . , N , are the Larmor frequencies, and Dn,n+1, n = 1, . . . , N − 1, are the
NN coupling constants. The Jordan–Wigner transformation [4] allows one to study all the
properties of such a system by means of a diagonalization of the matrix D + 2� with

� =




ω1 0 · · · 0 0
0 ω2 · · · 0 0
...

...
. . .

...
...

0 0 · · · ωN−1 0
0 0 · · · 0 ωN


 , D =




0 D1 · · · 0 0
D1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 DN−1

0 0 · · · DN−1 0


 . (2)

The problem of diagonalization of D +2� with arbitrary constants ωn, n = 1, . . . , N , and
Dk , k = 1, . . . , N −1, for large N (N ∼ 106) and computation of various functions of D + 2�

is a time-consuming problem usually dealt with the help of super computers. On the other
hand, there are two known exact solutions (suitable for studying systems with large N) for
such a problem when the spin system considered has periodic changing Larmor frequencies
and coupling constants. Namely, the case of equal sites (ω1 = · · · = ωn = a,D1 = · · · =
DN−1 = c) has been solved in [4], while the case of period 2 with odd N (ω1 = ω3 = · · · = ωN ,
ω2 = ω4 = · · · = ωN−1,D1 = D3 = · · · = DN−2, D2 = D4 = · · · = DN−1) has been solved
in [7].

The present paper concerns properties of a general periodic chain. In the following
sections, we shall demonstrate how to reduce the diagonalization problem of the Hamiltonian
of a k-periodic chain with (kn − 1)-sites (k > 2, n > 1) to the problem of finding roots
for explicitly given polynomials of degree less than or equal to k. Therefore, the methods
developed are particularly useful when n � k.

In what follows we will utilize essentially the result on diagonalization of the homogeneous
(in other words, 1-periodic) chain [4] which we state now.
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Lemma 2.1. Let c �= 0, then the matrix

Jn(a, c) =




a c 0 · · · 0 0 0
c a c · · · 0 0 0
0 c a · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · a c 0
0 0 0 · · · c a c

0 0 0 · · · 0 c a




(3)

has n-distinct eigenvalues

λj = a + 2c cos

(
πj

n + 1

)
, j = 1, . . . , n, (4)

and the corresponding eigenvectors are of the form

�xj =
(

sin

(
πj

n + 1

)
, sin

(
2πj

n + 1

)
, . . . , sin

(
nπj

n + 1

))
. (5)

Proof. It is a straightforward verification. �

3. Reduction over the period

Let us consider an open periodic chain of (kn + d)-sites (k > d � 0, k > 1) with k-periodic
nonzero NN coupling constants

D1 = Dk+1 = · · · = Dkn+1, Dd = Dk+d = · · · = Dkn+d ,

Dd+1 = Dk+d+1 = · · · = Dk(n−1)+d+1, Dk = D2k = · · · = Dkn,
(6)

and k-periodic Larmor frequencies

ω1 = ωk+1 = · · · = ωkn+1, ωd = ωk+d = · · · = ωkn+d ,

ωd+1 = ωk+d+1 = · · · = ωk(n−1)+d+1, ωk = ω2k = · · · = ωkn,
(7)

(Di, ωj ∈ R,Di �= 0, i, j = 1, . . . , k). We shall demonstrate how to reduce the
diagonalization problem for the Hamiltonian of such a system to the problem of diagonalizing
of a certain k × k block matrix which entries are matrices of dimensions m × m,
(m + 1) × (m + 1),m × (m + 1) and (m + 1) × m (m = n in section 5 and m = n − 1
in section 7). A particular case of this reduction will be used in the consecutive sections for
studying k-periodic chains of length kn − 1.

Before we proceed we make an agreement regarding our notation. If a Gothic letter is
used in the description of any matrix as its element, then this means that the corresponding
place in the matrix is a matrix. The size and the structure of a matrix denoted by a Gothic
letter should be clear or given in the context. Therefore, the original matrix is a block matrix.
To underline that the matrix consists of blocks we shall often denote such matrices in bold.
We shall also denote by Im the m × m identity matrix.

The Hamiltonian of a k-periodic system with (kn + d)-sites has the following form:

H = D + 2�, (8)
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where

� =




ω1 0 · · · 0 0 0 · · · 0 0 · · · 0 0
0 ω2 · · · 0 0 0 · · · 0 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

. . .
...

...

0 0 · · · ωk−1 0 0 · · · 0 0 · · · 0 0
0 0 · · · 0 ωk 0 · · · 0 0 · · · 0 0
0 0 · · · 0 0 ω1 · · · 0 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

. . .
...

...

0 0 · · · 0 0 0 · · · ωk 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 ω1 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

. . .
...

...

0 0 · · · 0 0 0 · · · 0 0 · · · ωd−1 0
0 0 · · · 0 0 0 · · · 0 0 · · · 0 ωd




(9)

and

D =




0 D1 0 · · · 0 0 0 · · · 0 · · · 0 0
D1 0 D2 · · · 0 0 0 · · · 0 · · · 0 0
0 D2 0 · · · 0 0 0 · · · 0 · · · 0 0
...

...
...

. . .
...

...
...

. . .
...

. . .
...

...

0 0 0 · · · 0 Dk−1 0 · · · 0 · · · 0 0
0 0 0 · · · Dk−1 0 Dk · · · 0 · · · 0 0
0 0 0 · · · 0 Dk 0 · · · 0 · · · 0 0
...

...
...

. . .
...

...
...

. . .
...

. . .
...

...

0 0 0 · · · 0 0 0 · · · 0 · · · 0 0
...

...
...

. . .
...

...
...

. . .
...

. . .
...

...

0 0 0 · · · 0 0 0 · · · 0 · · · 0 Dd−1

0 0 0 · · · 0 0 0 · · · 0 · · · Dd−1 0




. (10)

To diagonalize the matrix H, one finds (real) eigenvectors uν and (real) eigenvalues
λν, ν = 1, . . . , kn + d, which satisfy the following equation:

(D + 2�)uν = λνuν. (11)

To resolve this equation we associate with each vector u ∈ R
kn+d vectors u(j), j = 1, . . . , k,

formed by those coordinates of u whose numbers have residue j modulo k. Observe that
among vectors u(1), . . . , u(k) there are d-vectors of dimension (n + 1) and (k − d)-vectors of
dimension n. Now equation (11) can be rewritten as a system of n linear equations in u(j):

H




u(1)

...

u(k)


 = λν




u(1)

...

u(k)


 (12)

with matrix H = 2Ω + D. Here

Ω =




W1 0 0 · · · 0 0
0 W2 0 · · · 0 0
0 0 W3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · Wk−1 0
0 0 0 · · · 0 Wk




, (13)
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Wj = ωjIn+1 for j = 1, . . . , d,Wj = ωjIn for j = d + 1, . . . , k, and with an exception of
two degenerate cases

D =




0 D1 0 · · · 0 0 0 0 · · · 0 Dt
k

D1 0 D2 · · · 0 0 0 0 · · · 0 0
0 D2 0 · · · 0 0 0 0 · · · 0 0
...

...
. . .

. . .
...

...
...

...
. . .

...
...

0 0 · · · Dd−1 0 Dt
d 0 0 · · · 0 0

0 0 · · · 0 Dd 0 Dd+1 0 · · · 0 0
0 0 0 · · · 0 Dd+1 0 Dd+2 · · · 0 0
...

...
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

0 0 0 · · · 0 0 0
. . .

. . . Dk−2 0

0 0 0 · · · 0 0 0 0
. . . 0 Dk−1

Dk 0 0 · · · 0 0 0 0 · · · Dk−1 0




, (14)

with Dj = DjIn+1 for j = 1, 2, . . . , d − 1,Dj = DjIn for j = d + 1, . . . , k − 1, and
Dd ,Dk : R

n+1 → R
n given by

Dd =




Dd 0 0 · · · 0 0 0
0 Dd 0 · · · 0 0 0

0 0 Dd

. . . 0 0 0
...

...
...

. . .
. . .

...
...

0 0 0 · · · Dd 0 0
0 0 0 · · · 0 Dd 0




,

Dk =




0 Dk 0 · · · 0 0 0
0 0 Dk · · · 0 0 0

0 0 0
. . . 0 0 0

...
...

...
. . .

. . .
...

...

0 0 0 · · · 0 Dk 0
0 0 0 · · · 0 0 Dk




. (15)

It is easy to see that

DdDt
d = D2

dIn, DkDt
k = D2

k In, DdDt
k = DdDkJ

t
n, DkDt

d = DkDdJn, (16)

where Jn is the Jordan n × n cell:

Jn =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

. . .
. . .

. . .
...

...

0 0 0
. . . 1 0

0 0 0 · · · 0 1
0 0 0 · · · 0 0




. (17)

There are two degenerate cases. In the case k = 2, matrix D decomposes as

D =
[

0 Lt

L 0

]
, (18)
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where L : R
n+d → R

n:

L =




D1 D2 0 · · · 0 0 0
0 D1 D2 · · · 0 0 0

0 0 D1
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . .

. . .
. . .

...

0 0 0 · · · 0
. . .

. . .




, (19)

while in the case k > 2 and d = 0 we do not get matrix Dd , and matrix Dk : R
n → R

n is of
the form

Dk =




0 Dk 0 · · · 0 0
0 0 Dk · · · 0 0

0 0 0
. . . 0 0

...
...

...
. . .

. . .
...

0 0 0 · · · 0 Dk

0 0 0 · · · 0 0




. (20)

It is easy to see that this matrix satisfies DkDt
k = D2

k In−1,1 for a diagonal matrix In−1,1 with
the first n − 1 diagonal elements equal to 1 and the last one equals 0.

Remark 3.1. From the reduction obtained above, we divide consideration of the
diagonalization problem into three different cases: period k = 2, 3 and k � 4. In each
case there are further reductions depending on the value of d. In the next sections, we shall
work out the case k � 3 and d = k − 1.

4. Some auxiliary results

The diagonalization process of sections 5 and 7 will relay on some elementary facts about
matrices of the form Hi,j − λIj−i+1, where for i < j :

Hi,j =




2ωi Di 0 · · · 0 0
Di 2ωi+1 Di+1 · · · 0 0
0 Di+1 2ωi+2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2ωj−1 Dj−1

0 0 0 · · · Dj−1 2ωj




. (21)

These facts are mostly known and we give their proofs only for the reader’s convenience.

Lemma 4.1. If Ds �= 0 for all s = i, . . . , j − 1, then all the eigenvalues of the matrix Hi,j

are distinct.

Proof. Under the assumption that all Ds, s = i, . . . , j , are nonzero, one can reconstruct
every eigenvector uν of Hi,j by its eigenvalue λν and the first coordinate u1. Moreover, the
expressions for all other coordinates us, s = 2, . . . , j − i + 1, of uν are linear in u1. This
implies that every two eigenvectors uν and u′

ν with the same eigenvalue λν are proportional
with the coefficient u1/u

′
1. �
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Lemma 4.2. Non-diagonal elements of the adjoint matrix of (Hi,j − λIj−i+1) are

adjs,t {(Hi,j − λIj−i+1)} = adjt,s{(Hi,j − λIj−i+1)}
= (−1)s+t det(Hi,i+s−2 − λIs−1)Di+s−1 · · ·Di+t−2 det(Hi+t,j − λIj−i−t+1), (22)

where the first index in adjs,t {·} denotes the row number, the second denotes the column number
and t > s. The diagonal elements of the adjoint matrix are

adjs,s{(Hi,j − λIj−i+1)} = det(Hi,i+s−1 − λIs−1) det(Hi+s+1,j − λIj−i−s). (23)

Proof. The first part follows from an observation that element Di+s−2 situated in row
(s − 1) and column s of matrix (Hi,j − λIj−i+1) does not contribute to the cofactor (s, t) of
(Hi,j − λIj−i+1), and similarly for element Di+t−1 situated in row t and column (t + 1). The
second part is due to the splitting of the complement to the element (s, s) of (Hi,j − λIj−i+1)

into (Hi,i+s−1 − λIs−1) and (Hi+s+1,j − λIj−i−s). �

Corollary 4.1. If we denote elements of (Hi,j − λIj−i+1)
−1 by Ps,t (where s is row, and t is

column), then for t > s

Pt,s = Ps,t = (−1)s+t det(Hi,i+s−2 − λIs−1)Di+s−1 · · · Di+t−2 det(Hi+t,j − λIj−i−t+1)

det(Hi,j − λIj−i+1)
. (24)

The diagonal terms Pt,t are

Pt,t = det(Hi,i+t−1 − λIt−1)det(Hi+t+1,j − λIj−i−t )

det(Hi,j − λIj−i+1)
. (25)

Lemma 4.3. If D1 �= 0, then matrices H1,k and H2,k (k � 2) have no common eigenvalues.

Proof. First, observe that it is true for k = 2:

det(H1,2 − λI2) = (2ω1 − λ)(2ω2 − λ) − D2
1, (26)

and if λ is a root of det(H2,2 − λI1) = 0, then λ = 2ω2, which is the root of

(2ω1 − λ)(2ω2 − λ) − D2
1 = 0 (27)

only if D1 = 0.
For general k, if λ is a root of

det(H2,k − λIk−1) = 0, (28)

then for such λ:

det(H1,k − λIk) = (2ω1 − λ) det(H2,k − λIk−1) − D2
1 det(H3,k − λIk−2)

= −D2
1 det(H3,k − λIk−2). (29)

For the last polynomial, we can assume that it is nonzero by inductive hypothesis and because
D1 �= 0. From here the statement follows. �
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5. Exact diagonalization for a spin chain with (3n + 2)-sites

To demonstrate how the reduction over the period works, first we study a partial case of the
main result, namely a chain of period 3 with (3n + 2)-sites. The reduction of section 3 leads
us to the following system of linear equations:


2W1 − λνIn+1 D1 Dt

3

D1 2W2 − λνIn+1 Dt
2

D3 D2 2W3 − λνIn





u(1)

u(2)

u(3)


 = 0. (30)

Recall that Wj , j = 1, 2, 3, are just scalar matrices, as well as the matrix D1, while
D2,D3 : R

n+1 → R
n are given below:

D2 =




D2 0 0 · · · 0 0 0
0 D2 0 · · · 0 0 0

0 0 D2
. . . 0 0 0

...
...

...
. . .

. . .
...

...

0 0 0 · · · D2 0 0
0 0 0 · · · 0 D2 0




,

D3 =




0 D3 0 · · · 0 0 0
0 0 D3 · · · 0 0 0

0 0 0
. . . 0 0 0

...
...

...
. . .

. . .
...

...

0 0 0 · · · 0 D3 0
0 0 0 · · · 0 0 D3




.

(31)

From the second equation of (30)

(λν − 2ω2)u(2) = D1u(1) + Dt
2u(3). (32)

Assume that an eigenvalue λν of H is not equal to 2w2, then

u(2) = D1

λν − 2ω2
u(1) +

1

λν − 2ω2
Dt

2u(3). (33)

Substituting u(2) into the first equation and into the third equation of (30), and using that
D2Dt

2 = D2
2In we obtain a system:{(

D2
1 − (λν − 2ω1)(λν − 2ω2)

)
u(1) +

(
D1Dt

2 + (λν − 2ω2)Dt
3

)
u(3) = 0,

((λν − 2ω2)D3 + D1D2)u(1) +
(
D2

2 − (λν − 2ω2)(λν − 2ω3)
)
u(3) = 0.

(34)

Lemma 5.1. If

(λν − 2ω1)(λν − 2ω2) �= D2
1, (35)

then the following inequality holds

(λν − 2ω2)(λν − 2ω3) �= D2
2 . (36)

Proof. Observe, that if λν = 2ω2, then

(λν − 2ω1)(λν − 2ω2) = 0 �= D2
1 (37)

and

(λν − 2ω2)(λν − 2ω1) = 0 �= D2
2 . (38)
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Therefore, it is left to consider the case when λν �= 2ω2. Assume that

(λν − 2ω2)(λν − 2ω3) = D2
2 . (39)

Then from the second equation of (34)

((λν − 2ω2)D3 + D1D2)u(1) = 0. (40)

With respect to the standard scalar product 〈·, ·〉R
m,m = n, n + 1, we have

0 = 〈u(3), ((λν − 2w2)D3 + D1D2)u(1)〉R
n = 〈(

D1Dt
2 + (λν − 2ω2)Dt

3

)
u(3), u(1)

〉
R

n+1 . (41)

Therefore, in order to satisfy the first equation of (34) we necessarily have{(
D2

1 − (λν − 2ω1)(λν − 2ω2)
)
u(1) = 0,(

D1Dt
2 + (λν − 2ω2)Dt

3

)
u(3) = 0.

(42)

From here and under the assumption that

(λν − 2ω1)(λν − 2ω2) �= D2
1, (43)

we obtain that u(1) = 0. Because Dj �= 0, j = 1, 2, 3, the matrix(
D1Dt

2 + (λν − 2ω2)Dt
3

)
(44)

has rank n and its kernel is 0. Therefore, u(3) = 0. Finally, from (33) we obtain that u(2) = 0
and, thus, λν is not an eigenvalue for H. This verifies the lemma. �

Assume as in lemma 5.1 that

(λν − 2ω1)(λν − 2ω2) �= D2
1, (45)

then from the first equation of (34) we deduce that

u(1) = D1Dt
2 + (λν − 2ω2)Dt

3

(λν − 2ω1)(λν − 2ω2) − D2
1

u(3). (46)

Substituting (46) into (33) we obtain

u(2) = (λν − 2ω1)Dt
2 + D1Dt

3

(λν − 2ω1)(λν − 2ω2) − D2
1

u(3). (47)

Due to lemma 5.1

(λν − 2ω2)(λν − 2ω3) �= D2
2 . (48)

Thus, from the second equation of (34) we have that

u(3) = (λν − 2ω2)D3 + D1D2

(λν − 2ω2)(λν − 2ω3) − D2
2

u(1). (49)

Therefore, because λν �= 2ω2, u(3) satisfies(
(λν − 2ω1)(λν − 2ω2)(λν − 2ω3) − (λν − 2ω3)D

2
1 − (λν − 2ω1)D

2
2 − (λν − 2ω2)D

2
3

)
u(3)

= (
D1D3Dt

2 + D1D2Dt
3

)
u(3). (50)

This leads us to the following theorem:

Theorem 5.1. For j = 1, . . . , n each of the three solutions of the cubic equation

(λν − 2ω1)(λν − 2ω2)(λν − 2ω3) − (λν − 2ω2)D
2
3 − (λν − 2ω1)D

2
2 − (λν − 2ω3)D

2
1

= 2D1D2D3 cos

(
πj

n + 1

)
(51)



1048 K E Feldman

is an eigenvalue for H. The component u(3) of the corresponding eigenvector uν is

u(3) =
(

sin

(
πj

n + 1

)
, sin

(
2πj

n + 1

)
, . . . , sin

(
nπj

n + 1

))
. (52)

The remaining components u(1) and u(2) are determined uniquely from

u(1) = (λν − 2ω2)Dt
3 + D1Dt

2

(λν − 2ω1)(λν − 2ω2) − D2
1

u(3), (53)

and

u(2) = (λν − 2ω1)Dt
2 + D1Dt

3

(λν − 2ω1)(λν − 2ω2) − D2
1

u(3), (54)

where D2,D3 are given in (31).
There are two other eigenvalues of H which satisfy the following quadratic equation:

(λν − 2ω1)(λν − 2ω2) − D2
1 = 0. (55)

The component u(3) of the corresponding eigenvector uν is necessarily zero; the component
u(1) spans the (one dimensional) kernel of

(λν − 2ω2)D3 + D1D2 (56)

and the component u(2) is

u(2) = D1

λν − 2ω2
u(1). (57)

All eigenvalues constructed are distinct and they exhaust all (3n + 2)-distinct eigenvalues
for H.

Proof. Let us consider the case when 2w2 is an eigenvalue for H and uν is the corresponding
eigenvector. Then for the components u(1) and u(3) we have from the second equation of (30):

u(1) = − 1

D1
Dt

2u(3). (58)

From the first equation of (30)

u(2) = − 1

D1

(
2ω2 − 2ω1

D1
Dt

2 + Dt
3

)
u(3). (59)

Substituting this into the third equation of (30), we obtain(
− 1

D1
D3Dt

2 + − 1

D1

(
2ω2 − 2ω1

D1
D2Dt

2 + D2Dt
3

)
+ (2ω3 − 2ω2)

)
u(3)

=
(

(2ω3 − 2ω2) − (2ω2 − 2ω1)
D2

2

D2
1

− D2D3

D1

(
Jn + J t

n

))
u(3) = 0. (60)

Thus, from lemma 2.1

2(ω3 − ω2)D
2
1 + 2(ω1 − ω2)D

2
2 − 2D1D2D3 cos

(
πj

n + 1

)
= 0, (61)

for some j = 1, . . . , n. From here it follows that 2ω2 also satisfies equation (51); moreover,
the formulae for the component u(3) and (as a consequence) for u(1) and u(2) coincide with
those given in the body of the theorem. We obtain that the case λν = 2ω2 can be considered
simultaneously with all the other solutions of (51).

Therefore, every eigenvalue for H is either a solution for

(λν − 2ω1)(λν − 2ω2) = D2
1, (62)
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or it is a solution of (51) for some j = 1, . . . , n. Because H has exactly 3n + 2 eigenvalues
and all of them are distinct (see lemma 4.1), all the solutions of the quadratic equation and of
n cubic equations are multiplicity free and pairwise distinct.

Now the first part of theorem 5.1 follows from the remarks above, from (50) and lemma 2.1.
Indeed if (50) admits a nontrivial solution for some λν , then either λν = 2ω2 or

µ = (
(λν − 2ω1)(λν − 2ω2)(λν − 2ω3) − (λν − 2ω3)D

2
1 − (λν − 2ω1)D

2
2 − (λν − 2ω2)D

2
3

)
(63)

is an eigenvalue for D1D3Dt
2 + D1D2Dt

3. The first case has been already discussed, while for
the second we apply lemma 2.1. It follows then that µ is necessarily of the form

2D1D2D3 cos

(
πj

n + 1

)
(64)

for some j = 1, . . . , n. As was explained before, among those 3n eigenvalues constructed
there are no repeated. The component u(3) of the corresponding eigenvectors are uniquely
determined by the eigenvalues due to lemma 2.1. The other two components u(1) and u(2) are
also uniquely determined by (46) and (47), respectively. This gives us a unique eigenvector
uν of H for each solution of (51).

The second part of the statement follows from (34) because(
D1Dt

2 + (λν − 2ω2)Dt
3

)
(65)

has rank n and its kernel is 0. �

6. Multiple-quantum spin dynamics of an inhomogeneous spin chain with (3n + 2)-sites

Information on the exact spectrum of the Hamiltonian of an open spin chain provides us
with the techniques for determining the multi-quantum dynamics in such a system. The MQ
NMR dynamics of the nuclear spins coupled by the nearest-neighbour dipolar interactions was
developed in [2]. The corresponding Hamiltonian is

HMQ = 1

2

N−1∑
n=1

Dn,n+1{In,+In+1,+ + In,−In+1,−}. (66)

The Hamiltonian HMQ (66) is exactly of form (1) with the Larmor frequencies ωn = 0 for all
the sites. The Liouville–von Neumann equation for the density matrix ρ (h̄ = 1)

i
∂ρ

∂t
= [HMQ, ρ] (67)

with the Hamiltonian HMQ (66) gives us the intensities Gn(t) of n = 0 and n = ±2 orders
only, with the conservation conditions [13, 14]:

G0(t) + G2(t) + G−2(t) = 1. (68)

Theorem 6.1. The intensities Gn(t), n = 0,±2, of MQ coherences of the Hamiltonian HMQ

(66) are

G0(t) = Tr[cos2(D · t)]

N
, G±2(t) = Tr[sin2(D · t)]

2N
(69)

where D is defined in equation (2).
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Proof. According to [10]

G2(t) = G−2(t) = 1

N

∑
k=1,3,...

∑
n=2,4,...

∣∣∣∣∣∣
N∑

j=1

(−1)jSjkS
∗
jn

∣∣∣∣∣∣
2

, (70)

with

Sjk =
∑

l

u∗
j lukl e− i

2 λl t , (71)

where λl are the eigenvalues of D, l = 1, . . . , N , and the unitary matrix U = {ukl}Nk,l=1
diagonalizes D. Let us rewrite (70) in the matrix form

G2(t) = G−2(t) = 1

N
Tr(B0AB1A

∗), (72)

where B0 is the diagonal matrix with ones in odd rows and zeros in even rows, B1 is the
diagonal matrix with ones in even rows and zeros in odd rows:

B0 = diag{1, 0, 1, 0, . . .}, B1 = diag{0, 1, 0, 1, . . .};
and the matrix A is

A = S(B1 − B0)S
∗, S = exp

(
− i

2
Dt

)
. (73)

Observe that

(B1 − B0)D = −D(B1 − B0). (74)

Therefore,

(B1 − B0)S(B1 − B0) = S∗ and Tr[(S)m] = Tr[(S∗)m]. (75)

Using

AA∗ = A2 = IN , A(B1 − B0)A
∗ = (B1 − B0)(S

∗)4 (76)

and

Tr[A(B1 − B0)A
∗] = Tr[(B1 − B0)A

∗A] = Tr[(B1 − B0)AA∗] (77)

we deduce

Tr[B0AB1A
∗] = 1

4
Tr[(I − (B1 − B0))A(I + (B1 − B0))A

∗]

= 1

4
Tr[AA∗ − (B1 − B0)AA∗ + A(B1 − B0)A

∗ − (B1 − B0)A(B1 − B0)A
∗]

= 1

4
Tr[IN − (S∗)4] = −1

8
Tr[S4 + (S∗)4 − 2IN ]

= 1

2
Tr


(

S2 − (S∗)2

2i

)2

 = 1

2
Tr[sin2(Dt)]. (78)

From here the result follows. �

Remark 6.1. In [7] formula (69) was proposed for alternating spin chains. Theorem 6.1
establishes the same formula for arbitrary spin chains coupled by the nearest-neighbour dipolar
interactions.

Theorem 6.1 together with theorem 5.2 allows us to calculate MQ coherence intensities
of the zero and the second orders, G0(t) and G2(t) + G−2(t), without performing matrix
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1

D12

2

D23

3

D34

4

Figure 1. The four-spin fragment of the linear chain. The distances between neighbouring
spins in the fragments are 2.7 Å, 3 Å and 3.3 Å. The dipolar coupling constants are D12 =
2π × 6096,D23 = 2π × 4444,D34 = 2π × 3339 s−1.

(a)

(b)

Figure 2. Time dependence of the intensity of MQ coherences of (a) the zeroth and (b) second
order in a linear chain with 1001 spins coupled by the DDI among nearest neighbours. The linear
chain consists of the fragments of figure 1 with the distances between neighbouring spins in the
fragments 2.7 Å, 3 Å and 3.3 Å. The dipolar coupling constants are D12 = 2π × 6096,D23 =
2π × 4444,D34 = 2π × 3339 s−1.

multiplication, by solving O(N) cubic equations (compare with [10]). Let us consider a linear
spin chain of length 1001 which consists of four-spin fragments represented in figure 1.

The distances between neighbouring spins in the fragments are 2.7 Å, 3 Å and 3.3 Å. The
dipolar coupling constants D12 = 2π ×6096,D23 = 2π ×4444 and D34 = 2π ×3339 s−1 are
used in all numerical calculations. The intensities of MQ coherences for the inhomogeneous
linear chain with N = 1001 spins consisting of fragments of figure 1 are shown in figure 2.
The dynamics behaviour coincides with that given in [10].

It is evident that the problem of diagonalization of the XY-Hamiltonian for open spin
chains with periodic coupling constants is significantly more difficult than for cyclic systems
[6]. However spin dynamics of open chains of coupling spins has some specific peculiarities
which are different from dynamics of cyclic systems. The point is that dynamics of 1D systems
has a spin-wave character. Spin-wave packets reflect at the ends of the chain [15]. Due to these
effects in some cases spin dynamics of open 1D systems [15] is different from that of cyclic
systems [16] even in systems with large numbers of spins and at long times. This explains
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our choice of the exact solution of the open linear spin chain model for the computation of
the intensities of MQ coherences of the Hamiltonian HMQ (66), which are experimentally
measurable quantities describing spin dynamics of the open linear chains.

The above difference of open spin chains comparing with the cyclic systems makes open
linear spin chains particularly useful for solving some problems of quantum information
theory. As an example, we mention the problem of transferring qubits from the left end of the
chain to its right end [8].

7. The generalization of the method for spin chains with (kn − 1)-sites

Now we consider the case of a k-periodic system with (kn − 1)-sites. According to section 3,
to diagonalize Hamiltonian of such a system we have to solve the following system of linear
equations:

H




u(1)

...

u(k)


 = λν




u(1)

...

u(k)


 , (79)

where

H =




Dt
k

0

H1,k−1
...

0
Dt

k−1

Dk 0 · · · 0 Dk−1 2Wk




, (80)

and

H1,k−1 =




2W1 D1 0 · · · 0 0
D1 2W2 D2 · · · 0 0
0 D2 2W3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2Wk−2 Dk−2

0 0 0 · · · Dk−2 2Wk−1




. (81)

Observe that because all Dj , j = 1, . . . , k − 2, are diagonal n × n matrices, it is also true that

H1,k−1 = H1,k−1 ⊗ In. (82)

Assume that λν is not an eigenvalue for H1,k−1 (equivalently, is not an eigenvalue for H1,k−1),
and consider the matrix

G =




0(
H1,k−1 − λνIn(k−2)

)−1 ...

0
0 · · · 0 In−1


 . (83)

Under the above assumption on λν the eigenvector equation

H




u(1)

...

u(k)


 = λν




u(1)

...

u(k)


 (84)
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is equivalent to

G (H − λνInk−1)




u(1)

...

u(k)


 = 0, (85)

or in another form to


1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
. . .

. . .
...

0 0 · · · 1 0
0 0 · · · 0 1
Dk 0 · · · 0 Dk−1

G




Dt
k

0
...

0
Dt

k−1

2Wk − λνIn−1










u(1)

u(2)

...

u(k−2)

u(k−1)

u(k)




= 0. (86)

Let us denote elements of the matrix (H1,k−1 − λνIk−1)
−1 by Pi,j (where i is row, and j is

column). Using

(H1,k−1 − λνIn(k−1))
−1 = (H1,k−1 ⊗ In − λνIk−1 ⊗ In)

−1 = (H1,k−1 − λνIk−1)
−1 ⊗ In,

we derive from (84) for k − 1 � j � 1 that

u(j) = −(
Pj,1Dt

k + Pj,k−1Dt
k−1

)
u(k). (87)

Substituting this expression with j = 1 and j = k − 1 into the last equation of (84) we obtain(
P1,1DkDt

k + P1,k−1DkDt
k−1 + Pk−1,1Dk−1Dt

k + Pk−1,k−1Dk−1Dt
k−1

)
u(k) = (2ωk − λν)u(k).

(88)

Because

Dk−1Dt
k−1 = D2

k−1In−1, DkDt
k = D2

k In−1,

Dk−1Dt
k = Dk−1DkJ

t
n−1, DkDt

k−1 = Dk−1DkJn−1, (89)

with the help of corollary 4.1 we derive that if λν is not an eigenvalue of H1,k−1, then the
component u(k) of the corresponding eigenvector uν belongs to the kernel of

M = (det(H2,k−1 − λνIk−2)D
2
k + det(H1,k−2 − λνIk−2)D

2
k−1 − (2ωk − λν)

× det(H1,k−1 − λνIk−2))In−1 + (−1)kD1 · · · Dk

(
Jn−1 + J t

n−1

)
. (90)

Since

(2ωk − λν) det(H1,k−1 − λνIk−2) − det(H1,k−2 − λνIk−2)D
2
k−1 = det(H1,k − λνIk)

we can simplify the expression for M:

M = (
det(H2,k−1 − λνIk−2)D

2
k − det(H1,k − λνIk)D

2
k−1

)
In−1

+ (−1)kD1 · · · Dk

(
Jn−1 + J t

n−1

)
. (91)

Therefore,(
det(H1,k − λνIk)D

2
k−1 − det(H2,k−1 − λνIk−2)D

2
k

)
u(k) = (−1)kD1 · · · Dk

(
Jn−1 + J t

n−1

)
u(k).

(92)

We are ready to state the main result of the paper.
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Theorem 7.1. Each eigenvalue of the Hamiltonian H of a k-periodic system with (kn−1)-sites
is either an eigenvalue of H1,k−1 or it is a solution of the equation

det(H1,k − λνIk) − det(H2,k−1 − λνIk−2)D
2
k = (−1)k2D1 · · · Dk cos

(
πj

n

)
, (93)

for some j = 1, . . . , n − 1. Equation (93) does not have repeated roots and all k(n − 1)

solutions constructed from (93) are pairwise distinct and are not eigenvalues for H1,k−1.
If λν is the solution of (93) for some j = 1, . . . , n − 1, then it is an eigenvalue for H and

the component u(k) of the corresponding eigenvector uν is

u(k) =
(

sin

(
πj

n

)
, . . . , sin

(
(n − 1)πj

n

))
. (94)

The other components u(j), j = 1, . . . , k − 1, are determined uniquely from

u(j) = (−1)j−1

det(H1,k−1 − λνIk−1)

[
D1 · · · Dj−1 det(Hj+1,k−1 − λνIk−j−1)Dt

k

+ (−1)k−1 det(H1,j−1 − λνIj−1)Dj · · · Dk−2Dt
k−1

]
u(k), (95)

where Dk−1,Dk are given in (15) (d = k − 1). Every eigenvalue λν of H1,k−1 is an eigenvalue
of H. The component u(k) of the corresponding eigenvector uν of H is zero. The component
u(1) spans the one-dimensional kernel of

(−1)k−1D1 · · · Dk−2Dk−1 − det(H2,k−1 − λνIk−2)Dk. (96)

The remaining components u(j), j = 2, . . . , k − 1, are

u(j) = (−1)j−1 D1 · · · Dj−1 det(Hj+1,k−1 − λνIk−j−1)

det(H2,k−1 − λνIk−2)
u(1). (97)

Proof. The first part of the theorem follows from lemma 2.1 because H has exactly (kn − 1)-
distinct eigenvalues. Indeed, if an eigenvalue λν of H is not an eigenvalue of H1,k−1, then as
was shown above, the component u(k) of the corresponding eigenvector uν of H satisfies (92).
Therefore, λν satisfies (93) for some j = 1, . . . , n − 1.

For the second part of the theorem we again use lemma 2.1. The component u(k) of the
corresponding eigenvector uν , satisfies (92), and, therefore, is uniquely determined by λν as
stated in lemma 2.1. The remaining components of the eigenvectors u(ν) corresponding to the
solutions of (93) can be reconstructed from (87) using corollary 4.3.

Finally, for the last part we observe that from lemma 4.2 and the property of the adjoint
matrix

Dj−1(−1)j−2 D1 · · ·Dj−2 det(Hj,k−1 − λνIk−j )

det(H2,k−1 − λνIk−2)

+ (2ωj − λν)(−1)j−1 D1 · · ·Dj−1 det(Hj+1,k−1 − λνIk−j−1)

det(H2,k−1 − λνIk−2)

+ Dj(−1)j
D1 · · · Dj det(Hj+2,k−1 − λνIk−j−2)

det(H2,k−1 − λνIk−2)

= Dj−1
adj1,j−1{(H1,k−1 − λνIk−1)}

det(H2,k−1 − λνIk−2)
+ (2ωj − λν)

adj1,j{(H1,k−1 − λνIk−1)}
det(H2,k−1 − λνIk−2)

+ Dj

adj1,j+1{(H1,k−1 − λνIk−1)}
det(H2,k−1 − λνIk−2)

= δ1,j

det(H1,k−1 − λνIk−1)

det(H2,k−1 − λνIk−2)
= 0, (98)
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where k − 1 > j > 1 and δi,j is the Kronecker symbol. We also have

Dk−2(−1)k−3 D1 · · ·Dk−3(2ωk−1 − λν)

det(H2,k−1 − λνIk−2)
+ (2ωk−1 − λν)(−1)k−2 D1 · · · Dk−2

det(H2,k−1 − λνIk−2)
= 0.

(99)

If λν is an eigenvalue for H1,k−1, then

2ω1 + D1(−1)
D1 det(H3,k−1 − λνIk−2)

det(H2,k−1 − λνIk−2)
= det(H1,k−1 − λνIk−2)

det(H2,k−1 − λνIk−2)
= 0. (100)

Therefore, if u(1) spans the kernel of

(−1)k−1D1 · · · Dk−2Dk−1 − det(H2,k−1 − λνIk−2)Dk (101)

and u(k) = 0, then vector uν with the other components given by (97) does satisfy the
eigenvalue equation

(H − λIkn−1)uν = 0. (102)

This completes the proof. �

8. Conclusion

In this paper, we proposed a new one-dimensional exactly solvable model for a linear
k-periodic (in space) open spin chain with (kn − 1)-sites. For the diagonalization procedure
it is important that the number of sites is (k − 1)(mod k). Nevertheless, the model can serve
as a good approximation for any open linear periodic spin system if the number of sites in it
is much more than the period.

The developed method of diagonalization of the XY-Hamiltonian of inhomogeneous
linear spin chains can be applied to different problems of quantum information theory
[3, 7, 8] and spin dynamics. This method allows us to avoid matrix multiplications which are
time-consuming operations in the systems with large numbers of spins. In some cases we can
suggest analytical methods for problems of spin dynamics instead of the known numerical
ones [9].

The proposed method of diagonalization could also be applied to different physical and
technical problems which use three-diagonal matrices [18]. In particular, new numerical
methods of solving such problems could be worked out on the basis of the approach proposed
in this paper, and further factorizations of multivariable hypergeometric series for some
eigenvalues of general tridiagonal matrices [17] could be obtained.
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